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Abstract

We examine the stochastic contextual bandit problem in a novel continuous-action
setting where the policy lies in a reproducing kernel Hilbert space (RKHS). This
provides a framework to handle continuous policy and action spaces in a tractable
manner while retaining polynomial regret bounds, in contrast with much prior
work in the continuous setting. We extend an optimization perspective that has
recently been popular in the bandit literature to the nonparametric bandit setting
which naturally encompasses both finite and continuous-action contextual bandit
problems. Optimization frameworks naturally balance between exploration and
exploitation reducing the need for parameter tuning. Building on prior work in
random function approximation for kernel methods, we show a new approximation
error bound with linear convergence in the case where the loss `(s, a) is smooth
and strongly convex in the action a for all contexts s. Combining this result
with prior work on finite-dimensional online bandit optimization, we present
a fast algorithm for online nonparametric contextual bandit optimization with

an O
(√

log3(T )/T

)
average regret guarantee that holds against an oblivious

adversary, the first regret bound in this setting.

1 Introduction

Reinforcement learning is concerned with designing algorithms (or learning agents) for sequential
decision making tasks, where the agent learns from experience gained through interacting with the
world in the form of evaluative (or bandit) feedback (?). In the evaluative feedback model, the
learning agent makes a decision and is presented with an assessment of the decision it has made but is
given no information on the quality of other alternatives it could have chosen. This kind of feedback
should be contrasted with that in the supervised learning setting where the learning agent has access
to information about the quality of each of the possible alternatives via supervised labels.

There is a spectrum of assumptions made in the literature about the information available to the
agent in a reinforcement learning task. On one end of this spectrum are Multi-Armed Bandit (MAB)
problems where in each round the learner is presented a finite number of actions (arms) which give
(stochastic or adversarial) rewards when “pulled”. On the other end of the spectrum are the Markov
Decision Process (MDP) problems in which the agent observes a sequence of states dependent on the
previous state(s) and the action taken by the agent, thus the agent has some control over which states
are visited and must consider the long-term consequences of each action.

An interesting problem in between these two extremes is the Contextual Bandit which serves as the
motivation for this paper. At each time step, the agent is presented with a state, also referred to as the
context, which is chosen independently of all previous actions. The reward (or loss) for an action
depends on the context; thus, a learner must learn a mapping between the contexts and the actions
identifying the optimal action for each context. This problem is similar to online supervised learning
where the goal is to learn a mapping from inputs to given outputs, with the key difference being that
feedback is evaluative. The contextual bandit framework applies naturally to problems such as online
recommendations and clinical trials.



At first glance, contextual bandits appear to be fundamentally different from simple bandit problems
such as the MAB. However, they can be seen as a natural extension of MAB, where each potential
policy, i.e. mapping from contexts to actions, is an arm and the agent, instead of pulling arms
corresponding to actions, is pulling arms corresponding to policies and taking whatever action the
policy suggests under the context of that round.

Applying the MAB framework directly leads to a number of technical problems: regret bounds for
multi armed bandits depend explicitly on the number of arms involved, making them intractable
in settings where there are infinitely many policies, such as the contextual bandit problem with a
continuous state or action space. Additionally, the MAB framework assumes that the rewards of the
arms are all independent of each other, which is not the case in most problems with an infinite number
of policies where small variations in the policy typically produce small changes in the reward.

Such considerations have led to the development of continuum-armed bandits eg.(?), where some
structure relating the arms to one another is assumed. However, current approaches to continuum-
armed contextual bandits are unsatisfactory for our setting. They often make very strong assumptions
such as a finite-dimensional policy or reward function parameterization, requiring a large degree of
domain knowledge, or they make very weak assumptions, such as only using Lipschitz continuity,
resulting in guarantees that suffer from the curse of dimensionality.

This motivates us to study convex nonparametric bandit problems as defined in this paper, where the
arms (or policies) belong to a Reproducing Kernel Hilbert Space (RKHS). This also naturally allows
us to study continuous action contextual bandit problems where the arms themselves form a metric
space, a setting which has received less attention in the literature.

While few theoretical results exist for continuous action MDPs, the approaches used in practice
such as policy search algorithms are closer in spirit to our algorithms than they are to procedures
previously analyzed in the contextual bandit literature. This provides additional motivation for our
setting and a direction for future work.

The contributions of this paper are as follows: we present a novel formulation of continuous action
contextual bandits problem as a nonparametric zeroth-order optimization problem, providing the first
regret bounds in this setting. Furthermore, our bounds are independent of the state or action dimension
and the algorithm is computationally efficient, making the approach attractive in the high-dimensional
setting. Along the way, we extend the coordinate descent analysis in ? for random features to the
case where the objective is smooth and and strongly-convex with respect to the actions, providing
new “linear” O(cd) approximation error bounds. This result is independent of the contextual bandit
problem and may be of general interest. Finally, we demonstrate our algorithm on contextual bandit
benchmark tasks where it outperforms the parametric and finite-action baselines.

2 Related Work

Our analysis builds upon two areas of prior work:

The first is the optimization approach to stochastic bandit learning problems, which utilizes the
equivalence between evaluative (or bandit) feedback and zeroth order oracle access as studied in
the optimization literature (??). This approach estimates the gradient from (single-point) function
evaluations alone, allowing the use of efficient gradient descent algorithms. In Section ??, we review
several fundamental bandit problems and discuss them from an optimization perspective, surveying
their oracle complexity, as summarized in Table ??. In Section ??, we discuss prior work on zeroth
order optimization in greater detail.

The second is an approach for scaling nonparametric kernel learning to very large problems using
random features sampled from a distribution defined by the kernel. In Section ?? we summarize the
key results from this literature which we will use later.

Notation We use K to denote the number of arms or actions for a bandit (if finite), A or A to
denote the set of discrete arms or continuous actions respectively, and T to denote the number of
rounds or function evaluations. The dimension of the relevant continuous optimization problem is
denoted as d. ∆d is the d-dimensional simplex. Hk denotes the RKHS defined by the kernel k(x,y).
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Problem Actions Loss Domain Average Regret
Bandit Finite Linear ∆K O(

√
K/T )

Bandit Continuous Smooth, Str. Convex Rd O(
√
d2/T )

Contextual Finite Linear ∆|Π| O(
√
K log |Π|/T )

Contextual Continuous Smooth, Str. Convex* Hk O(
√

log3(T )/T )

Table 1: *Loss is
∑T
t=1 `(st,a) where `(st,a) is smooth and strongly convex in a for all t. This

table compares the structure and domain of the loss function for multiple bandit problems popular in
the literature against our setting and the corresponding optimization bounds. The finite dimensional
results are compiled from ???. The bound for the nonparametric continuous-action contextual bandit
problem given in the last row is the primary contribution of this work.

2.1 Review of Bandit Problems, an Optimization View

In general, bandit problems are online learning problems where information is obtained through
evaluative feedback. The classical example of the stochastic Multi-Armed Bandit described below
emphasizes this nature of the problem. When one arm of the bandit is pulled, it gives a noisy
reward which reveals information about its reward distribution but not that about other arms. Many
approaches to bandit problems involve distinct exploration and exploitation stages; the goal of the
exploration stage being eliciting the expected reward for all arms while that of the exploitation stage
being pulling the best known arm (so far) to maximize the reward. These algorithms thus exhibit an
explicit exploration-exploitation tradeoff and include a hyperparameter to control this tradeoff. As
we discuss below, optimization approaches naturally incorporate both goals simultaneously.

Multi-Armed Bandit The stochastic multi-armed bandit (MAB) problem consists of a set of
discrete actions (or arms) A, where actions have fixed, independent loss (or reward) distributions
pi(`). In the literature both reward and loss formulations are used, but in this paper we use the loss or
regret formulation. The goal of the algorithm is to “pull” arms in a sequence that minimizes the total
loss: min

∑T
t=1 E[`(at)].

The MAB problem can be posed as a linear optimization problem over the simplex ∆K by considering
the actions x ∈ ∆K to be distributions over A rather than the discrete actions a ∈ A themselves.
Then, E[`(x)] = cTx, where ci = E[`(ai)], and each round the agent is given access to noisy
observations of ci when taking action ai. Thus, bandit problems perform linear optimization in the
zeroth order setting where the linear function is not explicitly known and only available through noisy
evaluation at the vertices. In each round, the agent samples an arm according to this distribution and
the result of playing this mixture gives an unbiased noisy estimate of the value at that point inside the
simplex. In this setting the average regret is known to be Θ(

√
K/T ) in general and O(K log(T )/T )

if the gap between the best and second-best arm is bounded away from zero (??). Linear functions
over more general convex domains have been studied in ? and ?, with bounds ranging fromO(

√
d/T )

to O(
√
d2/T ).

Continuum-armed Bandits The simplex formulation of MAB as above can be generalized to
optimizing a nonlinear convex loss over an n-dimensional convex domain where the arms are points
in this domain. In the case of a linear loss, the optimal points are known to lie on the boundary,
however this does not hold for nonlinear convex losses. The nonlinear convex case was first discussed
in ?. More recently, average regret bounds of O( 4

√
d2/T ), O( 3

√
d2/T ), and O(

√
d2/T ) have been

shown for convex, strongly convex, and strongly convex and smooth functions respectively (???).
The algorithms used to achieve these bounds are variants of stochastic gradient descent where the
gradient is approximated using function evaluations provided by a noisy zeroth order oracle.

The more general nonconvex setting in which the loss function is Lipschitz-continuous and the actions
form a metric space was studied in ??. ? make the related assumption that the cost distribution is a
Gaussian process, giving bounds in terms of effective dimension. However, the nonconvexity of these
settings causes their bounds to grow exponentially with the dimension. This nonconvex, continuous
loss setting is sometimes called “nonparametric” because these approaches make nonparametric
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assumptions about the form of the loss function. We note a distinction as to what part of the problem
is being treated nonparametrically. In our work the object being optimized is nonparametric (infinite
dimensional), while in the nonparametric works listed above the loss function is nonparametric, but
the object being optimized is parametric (finite dimensional).
Contextual Bandits The contextual bandit problem extends the MAB setting by including a context
or state s ∈ S at each round; the loss distribution `(s, a) ∼ p(`|s, a) is now a function of both the
state s provided by the environment and the action a chosen by the algorithm. Thus the agent must
learn a mapping from states to actions, which we will call the policy π.

The contextual bandit problem with a context (or state) s where the loss is a function of the state and
action `(s, a) and the action set is finite was first analyzed in ?, where they examined the two-armed
contextual bandit problem. In the finite K-action case, a common approach is to define the policy
as a distribution over a finite set of “expert” policies Π. With this assumption, ?? give optimal
O(
√
K log |Π|/T ) regret bounds, though the computational complexity of their EXP4 algorithm is

linear in |Π|, making it intractable for very large policy classes. ? address this computational issue
using a coordinate descent procedure that maintains a sparse distribution over the experts. Their
algorithm assumes access to an “argmax oracle” which can return the best expert in Π based on the
current set of samples in constant time. Stated as an optimization problem, the experts approach
to contextual bandits is very similar to the MAB case where we perform stochastic zeroth order
optimization over the simplex of experts.

Alternatively, ? shows an algorithm that can compete with a parametric set of policies of VC
dimension d, obtaining O(

√
d log(T )/T ) regret bounds in the discrete action setting. Similar regret

bounds are obtained for contextual bandits with the linear loss assumption (?). Also worth noting is ?
which uses kernel methods to represent the state-action loss is a nonparametric way, but it still relies
on a finite action set. Again, we contrast this with our approach where the actions are continuous and
the policy is nonparametric.

There has been less work on contextual bandits for continuous action spaces. ? examines the case
where the (state, action) loss is Lipschitz continuous. With only this assumption, the analysis again
results in bounds that scale exponentially with the dimension in the worst case. While parameterizing
the loss function is a common assumption, as in the linear bandits above, it is less common to
parameterize the policy directly. ? present an actor-critic architecture where both the policy and
the loss function are parameterized independently. Parameterized policies are more common in the
control and reinforcement learning communities (see seminal works ?? or the more recent survey ?).
They deal with the more difficult Markov Decision Process setting where the agent’s actions affect
the next state distribution, and any guarantees are for asymptotic convergence to a local optimum.

To summarize, prior work on contextual bandits has made more restrictive simplifying assumptions
on the form of the policy, such as assuming a finite-dimensional (e.g. linear) parameterization for `
or π, a notable one being a mixture of experts setting as in (?). However, without extra knowledge
that the optimal policy lies in some finite-dimensional parameterized class, the policy mapping is
naturally an infinite-dimensional object. Thus the contextual bandit problem is most naturally posed
as nonparametric bandit learning.

2.2 Zeroth Order Optimization

Optimal algorithms for general finite-dimensional convex bandit optimization typically perform some
form of Stochastic Gradient Descent (SGD). SGD is a very popular algorithm because it is fast, easy to
implement, and has been shown to have optimalO(1/

√
T ) regret (???) in the first order oracle setting

where the algorithm is given direct access to an unbiased estimate of the gradient. An interesting
property of SGD is that the bounds are dimension independent, under a dimension-independent bound
on the variance of the gradient estimator, an attractive property for high dimensional problems.

In the full-information (supervised) setting, the agent is given complete access to the loss `(s, a) for
all actions a and can thus easily compute the gradient w.r.t. a. ? explore the spectrum of problems
between the bandit and the supervised setting, by considering multi-point feedback from a particular
loss `t on round t. However, in many problems of interest—such as when the loss distribution is the
result of noisy observations or the typical online learning setting—the agent is only allowed single
point feedback, thus this work does not apply. Instead we use the single-point gradient estimator of
the form introduced in ?:
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∇f(x) ≈ Eu
[
d

δ
f(x+ δu)u

]
(1)

where δ is a scalar and u is sampled from the uniform distribution over the unit sphere. They show
O(1/T 1/4) average regret bounds that hold even in the oblivious adversarial setting. This rate can
be improved to O(1/T 1/3) for the smooth and strongly convex case, and further to O(1/

√
T ) if

additionally the domain is unconstrained (?). This single-point gradient estimator plays a central
role in our nonparametric bandit algorithms. Unfortunately, the variance of these gradient estimators
depends on the dimension d, which in our case is infinite, and thus we cannot perform zeroth order
optimization directly. However, we show that we can exploit the RKHS assumption on the space of
policies to avoid this issue.

Worth noting also are approaches which avoid the difficulty of estimating the gradient from function
values by performing a form of search using a separation oracle, such as the ellipsoid algorithm (??),
or the random walk approach in ?. They achieve Õ(poly(d)/

√
T ) optimization error or average

regret respectively, which is optimal in terms of its scaling with T . However, these algorithms scale
poorly with the dimension.

2.3 Random Features for Scalable Nonparametric Learning

Kernels are a general way to provide structure to a function class by defining a notion of smoothness
without making more restrictive (parametric) assumptions. Recently, random features have been
used to improve the computational performance of nonparametric kernel methods for large problems
requiring many samples (???). This approach relies on the following theorem, which shows that any
positive definite (PD) kernel can be decomposed in terms of a feature map and a measure over the set
of features.
Theorem 1. From ??: If k(x, y) is a PD kernel, then there exists a set Θ and a measure p on Θ, and
features parameterized by θ, φ(x; θ) : X 7→ R in L2(X ), such that

k(x, y) =

∫
p(θ)φ(x; θ)φ(y; θ)dθ (2)

Thus sampling random features according to p will in expectation approximate functions in the
corresponding RKHS well. Using a randomized coordinate descent analysis in the infinite dimen-
sional Hilbert space, ? show that sampling d features according to p(θ) gives O(1/d) expected
approximation error when the loss is smooth and convex. A major contribution of this work–which
may be of general interest–is to extend this coordinate descent analysis to the case where the loss
is a sum over functions `(st, a) which are smooth and strongly convex in a for all t, resulting in
exponentially decaying approximation error bound O(ad).

In this paper, the kernel is defined as TODO. In the general case when the state and action spaces are
not one-dimensional and unconstrained, we can replace the analysis with TODO

3 Nonparametric Contextual Bandits Optimization

Recall that in the contextual bandit problem the agent wants to find a policy π that minimizes the
(average) cumulative loss over all rounds:

min
π

1

T

T∑
t=1

`(st, π(st)) (3)

Then, following the optimization perspective on bandit learning as discussed in Section ??, the agent
can be modelled as directly solving this optimization problem. In round t the agent plays a policy πt
which can be viewed as a query to a zeroth-order oracle for (??). This suggests zeroth order gradient
descent as a viable strategy for this problem. However, note that for problems with continuous state
or action spaces, the space of all policies is infinite-dimensional. As mentioned in Section ??, the
bounds for zeroth order gradient descent involve the dimension explicitly and would not give finite
regret bounds!
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We address this issue directly by formulating (??) as a nonparametric optimization problem in an
RKHS, rather than making parametric assumptions on the form of the reward function or the policy.

Using a random feature approximation approach, we show an O
(√

log3 T
T

)
average regret bound

when `(s, a) is smooth and strongly convex in a for all s ∈ S utilizing a coordinate descent analysis
along the lines of ? and Constant Nullspace Strong Convexity (CNSC) (?) arguments.

We assume that we are given access to a zeroth-order oracle which at each round t presents the
algorithm with a state st and then reveals the loss `(st, at) for the action at chosen by the algorithm.
The oracle may choose the sequence of states s1:T adversarially, but is oblivious to the algorithm’s
internal randomization. We also assume we are provided with a kernel decomposition for the kernel
k(x, y) in terms a set of features φ(x; θ) and a distribution over the feature parameters p(θ) as in
equation (??). Given this setting, the algorithm competes against policies in the RKHS defined
by k(x, y) of the form π(s) = 〈w(θ), φ(s; θ)〉. The problem is therefore an infinite-dimensional
optimization over the space w of policies:

min
w∈Hk

L(w) ,
T∑
t=1

`(st, 〈w,φ(st)〉). (4)

Given this problem setting, the general strategy of our algorithm is simple: first sample d(T ) features
from p(θ) according to the given number of rounds T , then perform standard (finite-dimensional)
zeroth order gradient descent in this d-dimensional space (see Algorithm ??). As the algorithm
is only given function values–not the gradient directly–we estimate the gradient using the single-
point gradient estimator in equation (??), with the slight modification that we subtract the average
function value from the previous gradient iteration from the current function value when estimating
the gradient. This modification reduces variance and still provides an unbiased estimator as the
expectation of u is zero. The single-point estimator is essential as the algorithm is only allowed to
see the result of one action in each state before being presented with the next state and so does not
have multi-point access to Lt, as is necessary for the algorithms presented in ? and ?.

Algorithm 1 Random Feature Bandit Gradient Descent
Given: number of features d, random feature class φ(x, θ), feature distribution p(θ), learning rate
schedule {ηt}Tt=1, sampling radius schedule {δt}Tt=1.
Notation: S is the unit sphere, US is the uniform distribution over S.
θi ∼ p(θ), i = 1, 2, . . . , d
φd(x) = [φ(x; θ1), . . . , φ(x; θd)]

T

w0 = 0
for t = 1, 2, ..., T do
u ∼ US
ft ← `t(st, 〈wt−1 + δu,φd〉)
gt ← (ft − ft−1)u
wt ← wt−1 − ηtgt

end for
return wT

To the best of our knowledge, zeroth order convex optimization in an infinite dimensional setting
has not previously been addressed in the literature. In the finite-dimensional setting, the regret
bounds depend explicitly on the problem dimension, and as a result, are not readily applied to the
infinite-dimensional case. However, as we show in this paper, the case where the domain being
optimized over is an RKHS, is indeed tractable. In particular, we show in section ?? that the regret
for policy in RKHS only increases by a poly-logarithmic factor in T compared to the parametric case.

3.1 Convergence Results

Notation First, we will lay out some notation used in this section. The average loss over all T
round is expressed as L(w) , 1

T

∑T
t=1 Lt(w) where Lt(w) , `(st, 〈w,φ(st)〉). We denote the

average regret as R(T ) , 1
T

∑T
t=1 Lt(wt)− L(w∗). The feature weight function giving an optimal

6



policy in the RKHS is written as w∗ ∈ arg minw∈Hk
L(w) wherew ∈ Hk is understood to mean

that 〈w,φ〉 ∈ Hk. We use the average regret formulation as opposed to the total regret often used in
the literature to emphasize the connection to optimization results.

We wish to bound the average regret R(T ) relative to the best policy in Hk. Our analysis splits
the regret into two components: the approximation error from using a finite set of features, and the
optimization error from the approximate optimization via bandit gradient descent w.r.t. the random
features.

After sampling the set of random features Θ = {θj}dj=1, the algorithm searches the subspace of
functions spanned by the d features, denoted Πd = {π(s) : π(s) = 〈w,φ(s)〉, supp(w) ∈ Θ}. The
approximation error is the difference in loss between π∗ and

π∗d ∈ arg min
π∈Πd

T∑
t=1

`(st, π(st)) (5)

where π∗d(s) = 〈w∗d,φ(s)〉. We can then express the optimization error as the sum of two error
components:

L(wt)− L(w∗) = L(w∗d)− L(w∗)︸ ︷︷ ︸
approximation error

+L(wt)− L(w∗d)︸ ︷︷ ︸
optimization error

Linear Convergence of Random Features First, we derive an exponentially decaying bound on
the estimation error L(w∗d)−L(w∗) from the optimization point of view where each random feature
is taken as a "coordinate" in the infinite-dimensional space. This forms one contribution of this
paper: extending the analysis of ? to the case when `(s, a) is smooth and strongly convex in a. Note
even in this setting, L(w) is not strongly convex w.r.t. w. However, here by leveraging the concept
of Constant Nullspace Strong Convexity introduced in ?, we show that the loss L(w∗d) given by d
Random Features, interpreted as d steps of an infinite-dimensional (fully-corrective) randomized
coordinate descent, has exponentially fast convergence to L(w∗). We define the following two key
assumptions:
Assumption 1. The loss `(s, a) is smooth w.r.t. the action a with parameter β > 0 iff its first
derivative satisfies

‖∇a`(s, a)−∇a`(s, a′)‖ ≤ β‖a− a′‖.
Assumption 2. The loss `(s, a) is strongly convex w.r.t. the action a with parameter m > 0 iff

`(s, a′)− `(s, a) ≥ 〈∇a`(s, a), a〉+
m

2
‖a− a′‖2.

The following lemma then shows that, for a strongly convex loss `(s, a), the approximation error
L(w)−L(w∗) for some function w can be bounded by the square magnitude of gradient evaluated
at point w.
Lemma 1. Let w ∈ Hk, and w∗ be any reference function in the RKHS. We have

L(w)− L(w∗) ≤ 1

2µ
‖∇L(w)‖2. (6)

for some µ = mλk > 0, where m is the strongly-convex parameter of loss `(s, a) w.r.t. a and λk is
the minimum positive eigenvalue of kernel matrix K where Ki,j = 〈φ(si),φ(sj)〉.

Then by showing that the descent amount in loss L(wd) given by each new random feature added is
proportional to the square magnitude of gradient∇L(wd), we are able to give the following theorem.
Theorem 2 (Approximation Error). Let Hk be the RKHS defined by the kernel k(x, y), φ(x; θ)
be a feature map bounded in magnitude by B ≥ |φ(x; θ)|, and p(θ) be a distribution such that
Equation (??) holds. If loss `(s, a) satisfies Assumptions ?? and ??, Then the expected approximation
error for the optimal policy w∗d in the space spanned by d random features is

E[ min
w∈Rd

L(w)]− L(w∗) ≤ γd (L(0)− L(w∗)) (7)

where γ = 1− µλk

βB2 .

7



Table 2: Comparison of algorithms used in the experiments: Here bi denotes the lower confidence
bound, which is set to zero when selecting actions greedily. K denotes the number of discretized
actions, n denotes the dimension of the raw state space s, and d denotes the dimension of the random
feature representation φ(s).

Name Action Set Parameters Policy
S-LinUCB [K] wi ∈ Rn, i ∈ [K] π(s) = miniw

>
i s− αbi

RF-LinUCB [K] wi ∈ Rd, i ∈ [K] π(s) = miniw
>
i φ(s)− αbi

S-BGD R w ∈ Rn π(s) = w>s

RF-BGD R w ∈ Rd π(s) = w>φ(s)

The proof is given in the appendix. The above theorem in expectation can be easily extended to the
high probability result using Theorem 1 of ?.

Theorem ?? provides a bound on the expected error of the best function in the set of functions
spanned by the d random features. After the initial phase where the algorithm samples a finite
number of features, it then performs a finite-dimensional bandit (zeroth-order) optimization. But the
algorithm can only find an approximately optimal solution, resulting in estimation error. Therefore
we use a finite dimensional estimation error result from ? which utilizes the Bandit Gradient Descent
(BGD) algorithm and assumes the loss function is smooth and strongly convex and the domain is
unconstrained.
Theorem 3 (Optimization Error). From ? Theorem 14 1: Let |Lt(w)| ≤ C for all w, t. If Lt(w) is
b-smooth and ν-strongly convex for all t and w ∈ Rd is unconstrained, then the BGD algorithm with

parameters δ =
(
d2C2(1+log(T ))

3Tbν

)1/4

and ηt = 1
tν has an average regret bound

1

T

T∑
t=1

Lt(wt)− min
w∈Rd

L(w) ≤ dC
√

3b(1 + log(T ))

νT
.

We can combine the approximation error (Theorem ??) and estimation error (Theorem ??) bounds

above to provide anO(
√

log3 T
T ) average regret bound for the continuous-action nonparametric bandit

problem, which is the primary theoretical contribution of this work.

Theorem 4 (Nonparametric Contextual Bandits). Let r = L(0)−L(w∗) and h = νr2 log2(1/γ)
3bC2 and

all other constants defined in the theorems above. Setting d = 1
2 log(1/γ) log

(
hT

1+log T

)
and using the

schedules for δt and ηt given in Theorem ??, then the average regret of RF-BGD (Algorithm ??) is

R(T ) ≤ r
√

1 + log T

hT

(
1 +

1

2
log

(
hT

1 + log T

))
.

Proof. Combining Theorem ?? and Theorem ?? gives a bound for the average regret in terms of
d and T . This bound can be minimized with respect to d , providing the value for d given above.

Setting d to this minimizing value gives the stated O(
√

log3 T
T ) result.

4 Experiments

We empirically demonstrate the performance of Algorithm ?? on two benchmark problems. The
first is a simple toy problem with a one-dimensional state which we refer to as the Planar Domain
(as the state to action policy mapping can be visualized on a plane) and the second is the Half-Field
Offense (HFO) soccer domain used in the reinforcement learning literature (?).

Our algorithm exploits some core properties of these domains: First, we assume that the action space
is continuous. Second, we make the nonparametric assumption that the optimal policy belongs to an

1There is a minor error in the statement of this result in ?: the RHS is divided by an extra factor of T
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Figure 1: Comparison of the log average test loss for RF-BGD and the baselines in the Soccer and
Planar domains

RKHS. Third, we assume that the loss is smooth and strongly convex with respect to the actions. As
ours is the first algorithm that addresses all three of these assumptions simultaneously, we are forced
to compare against algorithms designed for problems without at least one of these assumptions.

For our experiments we use the Gaussian kernel and Fourier features, as in ?. As the Fourier
transform of a Gaussian is also a Gaussian, the feature parameter distribution p(θ) is Gaussian.
Further implementation details are given in the appendix.

We compare our method with those in Table ??. Discrete action contextual bandits are very well-
studied in the literature and a common approach when faced with a continuous action problem is
to discretize the action space (e.g. divide the space into uniform intervals and “play” the center
of the ith interval as discrete action/arm i). Discretizing the actions in this way treats each action
independently, ignoring the ordinal structure relating the actions. This prevents the algorithm from
using the structure of the action space to generalize knowledge about one action to other neighboring
actions, resulting in an unnecessary degree of exploration and consequently slower learning. The
discretization approach becomes infeasible in higher dimensional continuous action spaces as the
number of actions needed grows exponentially with the dimension, while our algorithm does not
explicitly depend on the dimension. Thus the one-dimensional action problems illustrated in these
experiments are generous towards the discretized action baselines compared to problems with higher
dimensional action spaces. Further, discretization-based approaches cannot be used when the action
domain is unbounded, while our algorithm can easily be extended to that case.

We choose the LinUCB algorithm (?) for its simplicity and interpretability. LinUCB maintains a
linear model of the mapping from state to expected cost for each discrete action, along with confidence
bounds for each action quantifying the uncertainty resulting from limited experience with that action.
In each round, LinUCB chooses the action with the highest expected reward (equivalently minimum
loss) plus its upper confidence bound (equivalently minus its lower confidence bound). LinUCB
requires a set of features for constructing its linear model. We compare against LinUCB using two
different sets of features: the “raw” state representation s, and the random features used by our
algorithm φ(s). We refer to these two variants as S-LinUCB and RF-LinUCB respectively.

The other prevalent approach in the contextual bandit literature is to assume that the optimal policy
lies in a (finite-dimensional) parameterized policy class, typically linear in the state. These algorithms,
while addressing the continuous-action setting directly, typically require domain knowledge to select
an appropriate state space for the problem. If the provided state space is inadequate, these algorithms
can perform very poorly. We therefore compare RF-BGD against BGD with a policy linear in the raw
state representation st, denoted S-BGD. This baseline essentially uses the inner product kernel in the
state space. Note that d = n here (the ambient dimension of the state space), while for RF-BGD, d
grows with T .

Figure ?? compares the statistical performance of RF-BGD with the baselines described above in
terms of average (cumulative) test loss against the total number of function evaluations. We see that
the LinUCB variants suffer through a costly exploration period. After this extensive exploration the
LinUCB algorithms do perform quite well in terms of the final average regret–better than the BGD
variants in some cases, which is indeed possible because the policies are different, see Table ??–but
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for most large-scale problems of interest, the user is typically in the low-sample regime where
RF-BGD outperforms them.

Furthermore, it should be noted that we are showing the performance in terms of sample complexity.
If we consider computational complexity, the UCB algorithms are very expensive as they solve
a linear least-squares model at every step, costing O(d3) computation, while each RF-BGD step
is O(d). Thus the RF-BGD is the preferable algorithm both in the sample-constrained regime as
well as the computation-constrained regime. Additionally, this difference in performance will grow
quickly with the dimension of the action space because the number of discrete actions needed grows
exponentially, as noted above. Also of note is that the LinUCB algorithms have K times as many
parameters as the BGD equivalents (see Table ??).

In Figure ??, the dotted horizontal line represents the supervised baseline for the raw state policy
parameterization, obtained by solving the oracle least squares regression problem, i.e. with access to
the optimal actions, and represents the best performance that bandit gradient algorithms can achieve.
In both domains, the supervised solution for the Random Feature parameterization lies below the
scale of the plot. Finally, note that the Bandit Gradient policies differ from the supervised lower
bound in the limit due to the constant sampling radius δ (in (??)) and learning rate η. In practice,
decreasing schedules for δ increase instability and this small gap may be unavoidable. The LinUCB
variants are not lower bounded by this supervised policy performance as the discrete actions provide
a different policy parameterization.

5 Conclusion

After reviewing the bandit literature from an optimization perspective, we presented a novel non-
parametric, continuous-action contextual bandit formulation and provided an optimization-based

algorithm with an O(
√

log3(T )/T ) average regret guarantee for losses that are smooth and strongly
convex in the action. We then demonstrated the effectiveness of our approach empirically on two con-
tinuous action contextual bandit tasks, showing that our algorithm outperforms reasonable baselines
while being very simple and computationally efficient.
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Appendix

A Proof for Lemma 1

Proof. Let N be the Nullspace given by Φ = {φ(st)|t ∈ [T ]} which satifies

Φw =

T∑
t=1

〈φ(st),w〉 = 0, ∀w ∈ N , (8)

and denoteN⊥ as the orthogonal space ofN . Then decomposingw,w∗ asw = u+v,w∗ = u∗+v∗

where u,u∗ ∈ N , v,v∗ ∈ N⊥. We have

L(v) = L(w) , L(v∗) = L(w∗) , ∇L(w) = ∇L(v).

since the components in the Nullspace N does not contribute to any difference to the change in
objective from its definition (??). Therefore, for any ∆v ∈ N⊥, we have

L(v + ∆v)− L(v) ≥ 〈∇L(v),∆v〉+
m

2
‖Φ∆v‖2

≥ 〈∇L(v),∆v〉+
mλk

2
‖∆v‖2

≥ − 1

2µ
‖∇L(v)‖2,

where the firat inequality is from the strong convexity of `, the second inequality holds because
v ∈ N⊥, and the third inequality is obtained from minimizing the RHS. Then we reach our result

L(w∗)− L(w) = L(v∗)− L(v)

≥ − 1

2µ
‖∇L(v)‖2

= − 1

2µ
‖∇L(w)‖2,

which leads to the conclusion.

B Proof of Theorem 2

Proof. We interpret Random Features as Randomized Coordinate Descent with coordinates drawn
from distribution p(θ) that minimizes the objective

G(w̄) =

T∑
t=1

`(st, 〈w̄, φ̄(st)〉) (9)

where φ(.) =
√
p ◦ φ̄(.). Since `(s, a) is smooth with parameter β in a, the minimization w.r.t. a

coordinate θ has

`(〈w̄ + ηδh, φ̄(s)〉)− `(s, 〈w̄, φ̄(s)〉)

≤ ∇`(s, 〈w̄, φ̄(s)〉)ηφ̄(s; θ) +
βB2

2
η2.

where B is an upper bound on |φ̄(s, θ)|. Taking empirical sum over the T rounds, we have

G(w̄ + ηδh)−G(w̄) ≤ gθη +
βB2

2
η2,

where

gθ =

T∑
t=1

∇`(st, 〈w̄, φ̄(st)〉)φ̄(st; θ).
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Taking minimizer of both sides w.r.t. η results in

G(w̄ + η∗δh)−G(w̄) ≤ − g2
h

2βB2
,

and the taking expectation w.r.t. the distribution p(θ) from which coordinate is drawn, we have

Eθ[G(w̄ + η∗δθ)]−G(w̄)

≤ 1

2βB2

∫
θ

p(θ)g2
θdθ =

1

2βB2
‖∇L(w)‖2,

(10)

where the last equality follows directly by the definition of ∇L(w) evaluated at w, where w̄ =√
p ◦w.

Now notice that G(w̄t) = L(wt), and by Lemma (??) and (??), we have

Eθ(t+1) [L(w(t+1))]− L(w(t))

≤ −‖∇L(w(t))‖2

2βB2
≤ −µ(L(w(t))− L(w∗))

βB2

(11)

for any referencew∗ in the RKHS. Define ∆t = Eθ(t) [L(w(t))]−L(w∗). Then taking expectation
over θ(t) on the inequality (??), we have

∆t+1 −∆t ≤ − µ

βB2
∆t.

Recursively applying the above inequality leads to the conclusion.

C Proof of Theorem 4

Proof. Combining theorem 2 and 3, the average regret can be expressed as sum of the estimation
error and the approximation error:

Rd(T ) =
1

T

T∑
t=1

Lt(wt)− Lt(w∗) = ∆γd + dA

where ∆ = L(0) − L(w∗) and A =
√

3bC2(1+log T )
mT . Taking the derivative wrt d and setting it to

zero we get

∆ log(γ)ed log(γ) +A = 0

solving for d gives

d ==
1

2 log(1/γ)
log

(
hT

1 + log T

)

where h = m∆2 log2(1/γ)
3bC2 . Using this value for d, the regret is then restated as

R(T ) =∆

√
1 + log T

hT

(
1 +

1

2
log

(
hT

1 + log T

))

which is O(
√

log3 T
T ).
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D Experimental Details

Implementation Details The hyperparameters for both BGD and LinUCB were optimized for each
domain. For LinUCB this includes the number of discrete actions K and the exploration parameter
α which controls the relative weight of the confidence bounds versus the empirical expected loss
during action selection (see table ??). For BGD, a schedule for the learning rate and the sampling
radius δ must be chosen. We found that constant values for these were sufficient for our purposes,
despite the theory which suggests decreasing schedules. It was also useful to use multiple function
evaluations and sampling directions when estimating the gradient; in our experiments we averaged
over three samples of the unit direction vectors u and three function evaluations `t(w + δu) for each
u, costing 9 total function evaluations per gradient step. To provide a fair comparison, the plots given
in figure ?? are against the total number of function evaluations t, not gradient iterations. To further
decrease variance, we subtracted the average function value from the previous gradient iteration
from the current function value when estimating the gradient. Thus the gradient update direction is
gt = u(ft − ft−1); note that it is not necessary to multiply by the d/δ term in Equation (??) as this
scalar can be absorbed into the learning rate (see Algorithm ??).

In the experiments, we used d = 100, T = 1000, unit variance for p(θ), α = 1, K = 20, η = 0.1,
and δ = 1 in both domains.

Domain Details The Planar Domain consists of a one-dimensional state with an optimal policy
of π∗(s) = 2s3 − s and the loss being the squared difference from this optimal policy: `(s, a) =
(π∗(s)− a)2. The Soccer Domain has a two-dimensional state representing the agent’s position on
the field and the action space is the angle to kick the ball in order to score a goal. The loss is the
squared difference between the action chosen and the angle to the goal center.
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